181. Grignard-Addition an Pyridin-N-oxid

von Peter Schiess, Charles Monnier, Peter Ringele und Ebrahim Sendi

Institut für Organische Chemie der Universität Basel

(4. VI. 74)

Summary. Addition of phenyl-, alkyl-, alkenyl- and alkinyl-Grignard reagents to pyridine-Noxide in THF leads to 5-substituted (2Z, 4E)-pentadien-aldoximes **6** having (E) (syn)-configuration of the C, N-double bond. The unsaturated oximes are shown to arise through an electrocyclic ring opening reaction from the primary Grignard adducts **5**. These can be trapped by protonation at low temperature.

Einleitung. – Im Zusammenhang mit unseren Arbeiten über die Valenzisomerisierungsreaktionen von *cis*-Dienonen [1] haben wir die Reaktivität verschiedener Dienon-oxime wie z.B. der Verbindung 1 untersucht [2]. Dieses aus dem entsprechenden Aldehyd [3] leicht zugängliche Oxim ist valenzisomer zur bicyclischen Form 2 (s. Schema 1). Die Bildung der neben 1 spektroskopisch nicht nachweisbaren Verbindung 2 gibt sich daran zu erkennen, dass das stereoisomere Oxim 3, ähnlich wie der dem Oxim zugrunde liegende Aldehyd [3] bei 100° in Isooctan eine unkatalysierte *cis*, trans-Isomerisierung der γ , δ -Doppelbindung erleidet [2]. In Isobutanol erfolgt neben der *cis*, trans-Isomerisierung $3 \rightarrow 1$ mit ähnlicher Geschwindigkeit Aromatisierung zum 3-Phenyl-5, 6, 7, 8-tetrahydroisochinolin (4) (vgl. Schema 1). Im polaren Medium tritt demnach für das bicyclische Zwischenprodukt 2 die Eliminierung von Wasser in Konkurrenz zur elektrocyclischen Ringöffnung.

Die Umsetzung von Pyridin-N-oxid mit Phenylmagnesiumbromid führt zu einem Addukt, welchem die Strukturformel **5a** zugeschrieben worden ist [4]. Ein

Vergleich der intensiven, langwelligen UV.-Absorption dieser Verbindung (C_2H_5OH : λ_{max} 314 nm, ε 42000) mit derjenigen des Dien-aldoxims 1 (C_2H_5OH : λ_{max} 320 nm, ε 34000) liess die Vermutung aufkommen, dass dem *Grignard*-Addukt nicht die cyclische Formel **5a**, sondern die valenzisomere, offenkettige Struktur **6a** zukommt. Dass Pyridinderivate bei der Addition nucleophiler Reagentien eine Ringspaltung erleiden können, ist seit längerer Zeit bekannt. So liefern die aus Pyridin-N-oxid leicht zugänglichen N-Alkoxypyridiniumsalze mit Natronlauge cyclische Addukte, welche mit dem valenzisomeren, ringoffenen Oximäther im Gleichgewicht stehen [5] (*Schema 2*). Eine ähnliche Reaktion tritt mit sekundären Aminen ein [6]. Eine Ringspaltung wird auch bei der *Grignard*-Addition an Pyridazin-1-oxid beobachtet [7].

Wir haben die Addition von Phenylmagnesiumbromid an Pyridin-N-oxid einer nochmaligen Prüfung unterzogen, um die Struktur des hierbei sich bildenden Addukts aufzuklären. Über diese Untersuchung, in welche die Umsetzung mit verschiedenen gesättigten und ungesättigten *Grignard*-Reagentien einbezogen worden ist, soll hier berichtet werden¹).

Bildung der Pentadienaldoxime 6a-6i. – Beim Umsetzen von Phenylmagnesiumbromid mit Pyridin-N-oxid in Tetrahydrofuran bei -20° bis 0°, lässt sich nach dem Ansäuern des Reaktionsgemisches, wie beschrieben [4], ein Addukt vom Smp. 131–132° isolieren. Entsprechende, in Äther und in verdünnter Natronlauge leicht lösliche Addukte werden erhalten aus Pyridin-N-oxid mit Phenyläthinyl-, 2-Phenyläthenyl- und 2-Methylpropenylmagnesiumbromid sowie mit verschiedenen Alkylmagnesiumbromiden. Die allerdings nicht optimierte Ausbeute an Addukt beträgt 50–60% im Falle der Umsetzung mit Phenyl- und Alkenyl-Grignard-Reagentien. Sie liegt jedoch deutlich niedriger, d.h. zwischen 15 und 30% bei der Addition von Grignard-Reagentien, die sich von Alkylhalogeniden ableiten.

Bei den in Äther und Natronlauge leicht löslichen Addukten handelt es sich durchwegs um stereochemisch einheitliche, konjugiert ungesättigte 2,4-Pentadienaldoxime der Struktur **6** (s. *Schema 3*), wie sich aus den in Tabelle 1 zusammengestellten spektroskopischen Daten ergibt²). So zeichnen sich die Addukte durch ihre intensive, langwellige UV.-Absorption aus. Im IR.-Spektrum ist neben der breiten

Vorläufige Mitteilung: [8]. Die Bildung ungesättigter Aldoxime bei der Addition von Aryl-Grignard-Reagentien an Pyridin-N-oxid ist kürzlich auch von anderer Seite [9] beschrieben worden.

²) Mit Benzoylchlorid entsteht aus **6a** das Oximbenzoat vom Smp. 85-87°. Entgegen den ursprünglichen Angaben [4] sind Lösungen dieser Verbindung stabil, wenn sie im Dunkeln aufbewahrt werden. Das schwerlösliche Isomere vom Smp. 157° bildet sich erst beim Stehen am Tageslicht. Hierbei handelt es sich um ein stereoisomeres Oximbenzoat, vermutlich um dasjenige mit der all-(E)-Konfiguration.

OH-Bande bei 3300 cm⁻¹ eine starke N,O-Valenzschwingungsbande um 950 cm⁻¹ [10] zu erkennen. Die NMR.-Spektren zeigen in jedem Falle die für die Struktur **6** zu erwartende Zahl von Vinylprotonen an. Die Konfiguration der C,N-Doppelbindung ergibt sich aus der in Dimethylsulfoxid bestimmten Differenz der chemischen Verschiebung für das OH-Proton und für das Proton an C(1) ($\Delta \delta$ -Wert). Die $\Delta \delta$ -Werte der Oxime **6** liegen zwischen 2,6 und 2,9 ppm, was die (E)(syn)-Konfiguration der Oxim-Doppelbindung beweist [11]³). Die Ähnlichkeit der NMR.-Spektren aller durch Grignard-Reaktion gebildeten Oxime ist ein Hinweis dafür, dass sie alle derselben stereochemischen Reihe angehören. Unter Zuhilfenahme des NMR.-Verschiebungsreagens Eu(fod)₃ [12] (siehe unten) haben sich für vier der Oxime die in Tabelle 1 aufgeführten Kopplungskonstanten J_{23} und J_{45} bestimmen lassen. Aufgrund der Grösse dieser Kopplungskonstanten kommt der 2,3-Doppelbindung die (Z)- und der 4,5-Doppelbindung die (E)-Konfiguration zu. Die Oxime weisen also die im Formelbild **6** (s. Schema 3) wiedergegebene Konfiguration auf.

Es fällt auf, dass in den Oximen **6** das Signal des C(1)-Protons gegenüber demjenigen in der Vergleichsverbindung (E, E)-Zimtaldoxim [13] um 0,3–0,5 ppm nach tieferem Feld verschoben ist. Wir führen dies auf Van der Waals-Wechselwirkung des H-Atoms [15] mit dem *cis*-ständigen β -Vinyl-Substituenten zurück. Ein ähnlicher Effekt ist übrigens auch in α,β -ungesättigten Aldehyden zu beobachten, in welchen das Signal für das Formylproton in der (Z)-Form um 0,5–1 ppm bei tieferem Feld absorbiert als in der (E)-Form [16].

Wird berücksichtigt, dass sich die Oxime **6** durch Ringöffnung aus dem valenzisomeren Grignard-Addukt **5** bilden, so ist verständlich, dass die 2,3-Doppelbindung die durch den Pyridinring vorgegebene (Z)-Konfiguration hat, während die 4,5-Doppelbindung in der thermodynamisch bevorzugten (E)-Konfiguration entsteht. Nicht unbedingt vorauszusehen ist jedoch, dass auch die C,N-Doppelbindung bei der Ringöffnung ausschliesslich die (E)-Konfiguration annimmt. Es erweist sich nämlich, dass die stereochemisch einheitlichen (E,Z,E)-Oxime **6** beim Aufbewahren langsam, beim Behandeln mit Säure rasch in ein Stereoisomerengemisch aus (E,Z,E)und (Z,Z,E)-Form übergehen⁴). Die Bildung der (E,Z,E)-Oxime bei der Grignard-Addition an Pyridin-N-oxid entspricht demnach kinetischer und nicht thermodynamischer Produktkontrolle.

Es ist anzunehmen, dass das Dihydropyridinderivat 5 – der unmittelbare Vorläufer des Oxims 6 – in den beiden Konfigurationen *cis*- und *trans*-5 auftritt, die durch Inversion am Stickstoff miteinander im Gleichgewicht stehen (*Schema 3*). Nach den Auswahlregeln für pericyclische Reaktionen [17] erfolgt die Ringöffnung disrotatorisch. Somit sollte *cis*-5 ins (E,Z,E)-Oxim 6 und *trans*-5 ins (Z,Z,E)-Isomere 7 übergehen. Die beiden anderen, entgegengesetzten disrotatorischen Bewegungen werden aus sterischen Gründen ausser acht gelassen. Beide Oxime müssten sich aus

³) Für (E) (syn)-Aldoxime sind $\Delta\delta$ -Werte von 2,9–3,2 ppm charakteristisch, während diese für die (Z) (anti)-Isomeren zwischen 3,8 und 4,2 liegen [11].

⁴) Im NMR.-Spektrum lässt sich das Entstehen des (Z, Z, E)-Isomeren am Auftreten eines neuen Dubletts $(J_{12} = 10 \text{ Hz})$ für das Proton an C(1) bei 7,5-7,7 ppm erkennen. Dieses Signal ist im NMR.-Spektrum der rohen, durch Umkristallisation noch nicht gereinigten Oxime nicht zu erkennen. Die Oxime bilden sich demnach aus dem *Grignard*-Addukt **5** in stereochemisch einheitlicher Form.

Я
- <u>+</u> -
CJ
H
Ş
H-
ي ۳
H
Ŷ
H
U U
\mathbf{N}
0
H
ime
20%
Alà
u.
igte
ätt
Ses
ип
der
en
Dat
1. 2
le j
bel
Tal

	Stereochemie	Ausb.a)	Smp.	UV. ($C_2 H_5 OH)$	NMR. H—C(1) ^d)	Δð e)	$J_{23}{}^{f}$)	J 45
= C ₆ H ₅	E,Z,E	46%	132–133°	325 314	33 000 42 000	8,45	2,54	10	15
$= CH_3$	E,Z,E	29%	65–67°	265	30000	8,23	2,79	10	14
$= CH_3$	Z,Z,E	(q	$108{-}110^{\circ}$	267	28000	7,56	3,49	10	14
$= CH_3$	Z, E, E	e)	$150-151^{\circ}$	266	31000	7,18	4,07	14	15
$= C_2 H_5$	E,Z,E	24%	-11°	266	28000	8,31	2,76		
$= C_{3}H_{7}$	E,Z,E	22%	$25-28^{\circ}$	268	29000	8,19£)	2,77		
$= i - C_3 H_7$	E,Z,E	15%	Öl	267	32000	8,25 €)	2,78		
$= C_4 H_9$	E,Z,E	22%	ا ۍ°	268	28000	8,25	2,77		
$= CH = C(CH_3)_2$	E,Z,E	40%	$122-124^{\circ}$	318 304	42 <i>000</i> 47 <i>000</i>	8,32	2,78	11	14
= CH=CHC ₆ H ₅	E,Z,E,E	64%	149–151°	355 338 324	54000 65000 46000	8,40	2,85		
= C≡CC ₆ H ₅	E,Z,E	24%	$102{-}104^{\circ}$	342	35000	8,408)	2,90	10	15
oxim [13]	E, E	Į	75-76°	283	33 000	7,92	3,28	16	I
1	Z, E	ſ	136–137°	288	22000	7,4	са. 3,9	16	I
der Oximbildung durch alten durch Isomerisier	<i>Grignard</i> -Reaktion ung von 6b mit Sal	zsäure. Liefer	t mit saurer Dinit	trophenyl	-hydrazinlös	ung dasselbe I	Derivat von	n Smp. 163	-165°
	$= C_{6}H_{5}$ $= C_{6}H_{5}$ $= CH_{3}$ $= CH_{3}$ $= CH_{3}$ $= C_{3}H_{7}$ $= C_{3}H_{7}$ $= C_{4}H_{9}$ $= C_{4}H_{9}$ $= CH = C(CH_{3})_{2}$ $= CH = CH - C_{6}H_{5}$ oxim [13] der Oximbildung durch alten durch Isomerisier	$= C_{6}H_{5} = E_{2}F_{5} = C_{6}H_{5} = E_{2}F_{5} = E_{2}F_{5} = E_{2}F_{3} = E$	$= C_6 H_5 \qquad E, Z, E \qquad 46\% \\ = C_6 H_5 \qquad E, Z, E \qquad 46\% \\ = CH_3 \qquad E, Z, E \qquad 29\% \\ = CH_3 \qquad Z, Z, E \qquad 0) \\ = CH_3 \qquad Z, Z, E \qquad 29\% \\ = C_3 H_7 \qquad E, Z, E \qquad 24\% \\ = C_3 H_7 \qquad E, Z, E \qquad 22\% \\ = -c_3 H_7 \qquad E, Z, E \qquad 22\% \\ = -c_4 H_9 \qquad E, Z, E \qquad 22\% \\ = -c_4 H_9 \qquad E, Z, E \qquad 22\% \\ = -c_4 H_9 \qquad E, Z, E \qquad 22\% \\ = -c_6 H_3 \qquad E, Z, E \qquad 24\% \\ = -c_6 H_3 \qquad E, Z, E \qquad 24\% \\ = -c_6 H_3 \qquad E, Z, E \qquad 24\% \\ = -c_6 H_3 \qquad E, Z, E \qquad 24\% \\ = -c_6 H_3 \qquad E, Z, E \qquad 24\% \\ = -c_6 H_3 \qquad E, Z, E \qquad 24\% \\ = -c_6 H_3 \qquad E, Z, E \qquad 24\% \\ = -d_7 \qquad det Oximbildung durch Grignard-Reaktion. \\ = alten durch Isomeristerung von 6b mit Salzsäure. Liefen \\ = alten durch Isomeristerung von 6b mit Salzsäure. Liefen \\ = -c_6 H_6 \qquad -c_6 H_5 \qquad -c_6 H_6 \qquad -c_6 H$	$= C_6H_5 \qquad E, Z, E \qquad 46\% \qquad 132-133^\circ$ $= C_8H_5 \qquad E, Z, E \qquad 29\% \qquad 65-67^\circ$ $= CH_3 \qquad Z, Z, E \qquad b) \qquad 108-110^\circ$ $= CH_3 \qquad Z, Z, E \qquad b) \qquad 108-110^\circ$ $= CH_3 \qquad Z, E, E \qquad 0) \qquad 150-151^\circ$ $= C_3H_7 \qquad E, Z, E \qquad 24\% \qquad -11^\circ$ $= C_3H_7 \qquad E, Z, E \qquad 22\% \qquad 01$ $= C_4H_9 \qquad E, Z, E \qquad 22\% \qquad 01$ $= C_4H_9 \qquad E, Z, E \qquad 22\% \qquad 01$ $= C_6H_3 \qquad E, Z, E \qquad 22\% \qquad 01$ $= CH = C(CH_3)_2 \qquad E, Z, E \qquad 0, 0 \qquad 122-124^\circ$ $= CH = C(CH_3)_2 \qquad E, Z, E, E \qquad 64\% \qquad 149-151^\circ$ $= CH = C_6H_3 \qquad E, Z, E \qquad 24\% \qquad 149-151^\circ$ $= CH = C_6H_3 \qquad E, Z, E \qquad 24\% \qquad 102-104^\circ$ $= CH = C(CH_3)_2 \qquad E, Z, E \qquad 24\% \qquad 102-104^\circ$ $= CH = C(CH_3)_2 \qquad E, Z, E \qquad 24\% \qquad 102-104^\circ$ $= CH = C(CH_3)_2 \qquad E, Z, E \qquad 24\% \qquad 102-104^\circ$ $= CH = C(CH_3)_2 \qquad E, Z, E \qquad CH = C_6H_3 \qquad CH = C_6H_3$	mm = C_6H_s E,Z,E 46% $132-133^\circ$ 325 = CH_s E,Z,E 29% $65-67^\circ$ 265 = CH_s E,Z,E 24% -11° 266 = C_sH_r E,Z,E 24% -11° 266 = C_sH_r E,Z,E 22% 268 268 = C_sH_r E,Z,E 15% 01 267 266 = C_sH_r E,Z,E 15% 01 267 268 = $CH=C(CH_s)_2$ E,Z,E 40% $122-124^\circ$ 318 = $CH=C(CH_s)_2$ E,Z,E 40% $122-124^\circ$ 318 = $CH=CH-C_6H_s$ E,Z,E 40% $122-124^\circ$ 318 = $CH=CH-C_6H_s$ E,Z,E 40% $122-124^\circ$ 318 = $CH=CH-C_6H_s$ E,Z,E	$ = C_{\theta}H_{s} \qquad E,Z,E \qquad 46\% \qquad 132-133^{\circ} \qquad 325 \qquad 33000 \\ = CH_{s} \qquad E,Z,E \qquad 29\% \qquad 65-67^{\circ} \qquad 225 \qquad 33000 \\ = CH_{s} \qquad E,Z,E \qquad v) \qquad 108-110^{\circ} \qquad 267 \qquad 28000 \\ = CH_{s} \qquad Z,Z,E \qquad v) \qquad 108-110^{\circ} \qquad 267 \qquad 28000 \\ = C_{s}H_{7} \qquad E,Z,E \qquad 24\% \qquad -11^{\circ} \qquad 266 \qquad 31000 \\ = C_{s}H_{7} \qquad E,Z,E \qquad 24\% \qquad -11^{\circ} \qquad 266 \qquad 28000 \\ = C_{4}H_{9} \qquad E,Z,E \qquad 22\% \qquad 0^{\circ} \qquad 0^{\circ} \qquad 125-124^{\circ} \qquad 318 \qquad 42000 \\ = C_{4}H_{9} \qquad E,Z,E \qquad 22\% \qquad 0^{\circ} \qquad 0^{\circ} \qquad 325-28^{\circ} \qquad 268 \qquad 29000 \\ = C_{4}H_{9} \qquad E,Z,E \qquad 22\% \qquad 0^{\circ} \qquad 0^{\circ} \qquad 322-124^{\circ} \qquad 318 \qquad 42000 \\ = CH=C(CH_{9})_{2} \qquad E,Z,E \qquad 64\% \qquad 149-151^{\circ} \qquad 338 65000 \\ = CH=C(CH_{9})_{2} \qquad E,Z,E \qquad 24\% \qquad 102-104^{\circ} \qquad 338 65000 \\ = CH=C(CH_{9})_{2} \qquad E,Z,E \qquad 24\% \qquad 102-104^{\circ} \qquad 338 65000 \\ = CH=C(CH_{9})_{2} \qquad E,Z,E \qquad 24\% \qquad 102-104^{\circ} \qquad 342 3300 \\ = CH=C(C_{\theta}H_{5} \qquad E,Z,E \qquad 24\% \qquad 102-104^{\circ} \qquad 342 3300 \\ = C=C-c_{\theta}H_{5} \qquad E,Z,E \qquad 24\% \qquad 102-104^{\circ} \qquad 342 3300 \\ = C=C-c_{\theta}H_{5} \qquad E,Z,E \qquad 24\% \qquad 102-104^{\circ} \qquad 342 3300 \\ = C=C-C_{\theta}H_{5} \qquad E,Z,E \qquad CH=C(CH_{9})_{2} \qquad CH=C(CH=C(CH_{9})_{2} $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l lllllllllllllllllllllllllllllllllll$

wie 6b. Die Verbindungen 6b und 7b unterscheiden sich demnach nicht in der Stereochemie der C, C-Doppelbindungen.

Gebildet aus (E, E)-Sorbinaldehyd. In der Literatur [14] wird ein um 10° höherer Smp. angegeben.

) Wo nicht anders vermerkt in CDCl₃.

 $\Delta \delta = \delta_{\text{OH}} - \delta_{\text{H}C(1)} \text{ in } (\text{CD}_3)_2 \text{SO [11]}.$

Kopplungskonstanten in Hz, bestimmt nach Zugabe von Eu(fod)₃.

c) Gebildet aus
 d) Wo nicht and
 d) Wo nicht and
 c) Δδ = δο_H-δ_H
 f) Kopplungskoi
 g) In (CD₃)₂SO.

dem cyclischen Vorläufer zunächst in der s-*cis*-Konformation bilden. In dieser weist aber 7 eine ungünstige Wechselwirkung zwischen C(5) und der *cis*-ständigen OH-Gruppe auf. Das erklärt, weshalb die zu 7 führende Ringöffnung von *trans*-5 nicht mit derjenigen von *cis*-5 zu 6 zu konkurrieren vermag.

Europium-induzierte chemische Verschiebung der NMR.-Signale ungesättigter Aldoxime. – Zur Abklärung der Konfiguration der Doppelbindungen in den Oximen 6 haben wir deren NMR.-Spektren in Gegenwart des NMR.-Verschiebungsreagens Eu(fod)₃ [12] aufgenommen. Zugabe des Europiumkomplexes zu Lösungen der Oxime in Chloroform bewirkt neben einer Signalverbreiterung die erwartete, starke paramagnetische Verschiebung der Signale für die OH-Gruppe und für die olefinischen Protonen⁵). Dadurch werden die NMR.-Spektren der Oxime nach erster Ordnung interpretierbar, was es ermöglicht, die in Tabelle 1 aufgeführten Werte für die Kopplungskonstanten J_{23} und J_{45} direkt den Spektren zu entnehmen.

Innerhalb der Messgenauigkeit ändert sich für alle untersuchten Verbindungen die Europium-induzierte chemische Verschiebung linear mit der Konzentration an Verschiebungsreagens. Die auf ein molares Europium/Substrat-Verhältnis von 1,0 extrapolierten Δ Eu-Werte für die von uns hergestellten Oxime sowie für die zum Vergleich untersuchten Zimtaldoxime bekannter Stereochemie [13] sind in Tabelle 2 zusammengestellt. Es fällt auf, dass in den Aldoximen mit (Z)-Konfiguration der C,N-Doppelbindung die Protonen H(1) und H(2) ähnlich grosse Δ Eu-Werte von 35-40 ppm zeigen, und dass diese Werte für die übrigen Vinylprotonen mit zunehmendem Abstand von der funktionellen Gruppe rasch abnehmen. Im Gegensatz dazu zeigen die Protonen der (E,Z,E)-Aldoxime **6** nicht die erwartete, stetige Abnahme ihrer Δ Eu-Werte mit zunehmendem Abstand von den Heteroatomen: Das Proton H(2) weist bei weitem die stärkste Verschiebung auf (Δ Eu: 25-30 ppm) und H(4) wird etwa gleich stark verschoben wie das unmittelbar an der C, N-Doppelbindung liegende H(1) (Δ Eu: je *ca.* 10 ppm). In ähnlicher Weise unterscheiden sich die Δ Eu-

⁵) Für Eu(dpm)₃ werden paramagnetische Verschicbungen geringerer Grösse bei stärkerer Linienverbreiterung beobachtet.

Werte der Protonen in den zwei stereoisomeren Oximen des (E)-Zimtaldehyds. Mit NMR.-Verschiebungsreagentien lässt sich demnach für α,β -ungesättigte Aldoxime eine klare Zuordnung zur (E)- bzw. (Z)-Reihe treffen.

Oxim		Stereochemie	⊿Eu-Werte ^a)				
			H ¹ 9,3	H ² 27,0	H ³	H ⁴ 10,7	H ⁵ 0,8
6a,	$R = C_{\theta}H_{\delta}$	<i>E,Z,E</i>					
6b,	$R = CH_3$	E,Z,E	9,0	25,1	3,8	8,5	2,4
7b,	$R = CH_3$	Z, Z, E	38,5	40,0	6,9	4,6	2,7
14,	$\mathbf{R} = \mathbf{CH}_{3}^{\mathbf{b}}$	Z, E, E	40,6	37,2	5,7	6,7	2,2
6g,	$R = CH = C(CH_3)_2$	E,Z,E	10,8	31	3,5	12,0	3,5
6 i ,	$R = C \equiv C - C_6 H_5$	E, Z, E	13,3	30,8	4,0	11,5	2,8
Zimtaldoxim		E, E	7,3	25,2	7,3		
Zimtaldoxim		Z, E	37,6	30,8	9,7		

Tabelle 2. $Eu(fod)_3$ -induzierte Verschiebung der NMR.-Signale (ΔEu -Werte) für die olefinischenProtonen in ungesättigten Aldoximen HO-N=CH-CH=CH-CH=CH-R

a) 0,05-0,2M Oxim in CDCl₃; Δ_{Eu} = Δδ extrapoliert für [Eu(fod)₃]/[Oxim] = 1. Jedes Oxim wurde bei mindestens 3 verschiedenen Konzentrationen an Verschiebungsreagens vermessen.
 b) S. Tabelle 1, Fussnote c).

Eine quantitative Interpretation der von uns gemessenen Δ Eu-Werte aufgrund der für die Pseudokontaktverschiebung gültigen Beziehung

$$\Delta \operatorname{Eu} = \operatorname{c} \cdot \frac{3 \cos^2 \delta_{\mathbf{i}} - 1}{r_{\mathbf{i}}^3}$$
[18]

ist aus zwei Gründen nicht möglich: Erstens sind die untersuchten Substrate beweglich, und können verschiedene, energetisch gleichwertige Konformationen einnehmen. In diesen nimmt der Abstand zwischen dem Europium und einem bestimmten Proton (r₁) und ebenso der Winkel zwischen dem Proton, dem Europium und dem komplexierenden Heteroatom (δ_i) unterschiedliche Werte an. Die gemessenen Daten stellen daher Mittelwerte über sämtliche der in Lösung vorliegenden Konformationen der Europiumkomplexe dar. Zweitens sind Oxime ambidente Nucleophile, und aus bisherigen Untersuchungen lässt sich nicht entscheiden, ob sie bevorzugt am Sauerstoff- [19] oder am Stickstoffatom [20] komplexiert werden. Aus unseren Messungen geht hervor, dass keine direkte Beziehung zwischen den \Der-Werten und dem mittleren Abstand der entsprechenden Protonen zum Oxim-Sauerstoffatom besteht. Eine solche Beziehung lässt sich für Alkohole aufstellen [21], sie soll auch für gewisse Oxime gelten [19], und wird als Hinweis dafür angesehen, dass sich das Europium im Komplex an das Sauerstoffatom bindet. Die von uns für die (E,Z,E)-Oxime 6 gefundenen Δ Eu-Werte stehen aber eher zum mittleren Abstand der Protonen vom freien Elektronenpaar am Stickstoff- als am Sauerstoffatom in einer inversen Beziehung. So kommt H(2) mit dem höchsten Δ Eu-Wert in der planaren Konformation A (Schema 4) in unmittelbare Nachbarschaft zum Stickstoffatom zu liegen, während in der um die Bindung 1,2 aus der Ebene verdrehten Konformation **B** ein kurzer Abstand vom Stickstoffatom zu H(4) mit dem zweitgrössten Δ Eu-Wert zu erkennen ist. In den (Z)-Oximen lassen sich die Δ Eu-Werte weder mit dem

Abstand der H-Atome vom Stickstoff- noch mit demjenigen vom Sauerstoffatom korrelieren. Das Fehlen einer einfachen Korrelation in diesen Oximen könnte auf die Winkelabhängigkeit der Pseudokontaktwechselwirkung zurückzuführen sein; es könnte aber auch darauf beruhen, dass im Oxim Sauerstoff- und Stickstoffatom als Koordinationspartner für das Europium in Konkurrenz zueinander stehen. Das würde bedeuten, dass das Verschiebungsreagens im Zeitmittel mit beiden Zentren in gleichem oder unterschiedlichem Ausmass zu koordinieren vermag. Aus den vorliegenden Ergebnissen lässt sich nicht entscheiden, welche dieser Erklärungen zutrifft.

Grignard-Addition an Pyridin-N-oxid in der Kälte. - Bei der Addition von Grignard-Reagens an Pyridin-N-oxid sind Magnesiumsalze der Struktur 5' als Primäraddukte anzunehmen (s. Schema 5). Durch elektrocyclische Ringöffnung bilden sich daraus die Magnesiumsalze 6' der oben beschriebenen, ungesättigten Oxime 6. Es sollte nun möglich sein, die Primäraddukte 5' durch Protonierung in die zum Oxim 6 valenzisomeren N-Hydroxy-1,2-dihydropyridine 5 überzuführen. Zu diesem Zwecke wurde die Umsetzung von Pyridin-N-oxid mit Phenylmagnesiumbromid und die Hydrolyse mit Ammoniumchloridlösung bei -- 40° durchgeführt. Hierbei wurde im ätherischen Extrakt kein Oxim 6a, sondern nur wenig 2,6-Diphenyl-1hydroxy-1,2,5,6-tetrahydropyridin (8) vom Smp. 136–139° aufgefunden. Die Hauptmenge des Reaktionsproduktes liess sich erst durch wiederholtes Auswaschen der wässerigen Phase mit Chloroform als uneinheitliches Harz extrahieren. Durch Chromatographie wurde dieses in Oxim 6a (12%), 2-Phenylpyridin-N-oxid (10a) (30%) und das Tetrahydropyridinderivat 9a vom Smp. 104-106° (28%) aufgetrennt. Die Struktur von **9a** folgt aus den chemischen und spektroskopischen Eigenschaften: So enthält die Verbindung eine OH-Gruppe (IR.-Bande bei 3580 cm-1) und einen isolierten Benzolkern (UV,-Maximum bei 256 nm, ε 225). Beim Erhitzen auf 160° geht sie in ein Gemisch von 2-Phenylpyridin und dessen N-Oxid 10a über, was zeigt, dass sie dasselbe Kohlenstoffskelett wie diese beiden Verbindungen aufweist. Die Lage der Doppelbindung in **9a** folgt aus den im experimentellen Teil aufgeführten NMR.-Daten.

Sowohl das Oxim 6a als auch das N-Hydroxy-tetrahydropyridin 9a sind unpolare, gut ätherlösliche Verbindungen. Wenn sie sich mit Äther aus dem hydrolysierten, wässerigen Reaktionsgemisch nicht ausziehen lassen, muss angenommen werden, dass sie einen polaren, wasserlöslichen Vorläufer aufweisen, welcher sich erst mit Chloroform extrahieren lässt. So zeigt die Abwesenheit der für 6a charakteristischen, langwelligen UV.-Absorption bei 314 nm im kalten Chloroformextrakt des wässerigen Reaktionsgemisches, dass dieser noch kein Oxim 6a enthält. Dieses bildet sich erst beim Erwärmen auf 50° oder langsam beim Stehen bei Zimmertemperatur.

Als labiler Vorläufer für die Produkte 6a, 9a und 10a kommt das 1,2-Dihydropyridin **5a** oder ein Isomeres desselben in Frage. Durch rasche Extraktion des Reaktionsgemisches bei -10° mit Chloroform und Entfernen des Lösungsmittels in der Kälte liess sich dieser Vorläufer als farbloser Festkörper isolieren. Mit Phenylisocyanat entsteht daraus ein Addukt vom Smp. 102-104°, welchem aufgrund der spektroskopischen Daten die Oxazolidinonstruktur 11 zukommt. So zeigt das IR.-Spektrum die für dieses Ringsystem charakteristische C.O-Valenzschwingung bei 1760 cm⁻¹ [22]. Eine NH-Bande, wie sie für die ebenfalls in Betracht zu ziehende Urethanstruktur 12 zu erwarten wäre, ist nicht zu erkennen. Der labile Vorläufer im Chloroformextrakt ist somit 2-Phenyl-2,5-dihydropyridin-N-oxid 13a, welches mit dem Phenylisocyanat unter 1,3-dipolarer Cycloaddition mit der Nitrongruppierung reagiert [23]. Die unkonjugierte Anordnung der Doppelbindungen in 13a und damit auch die Lage der Doppelbindung im Cycloaddukt 11 ergibt sich aus der fehlenden, langwelligen UV.-Absorption des kalten Chloroformextraktes und aus dessen NMR.-Spektrum. In diesem erscheint das Proton am C(6) als Triplett bei 7,2 ppm (J =4 Hz) und wird aufgespalten durch die vicinale Methylengruppe (Multiplett bei 3,2 ppm), wie sich durch einen Doppelresonanzversuch zeigen lässt.

Aus Schema 5 ist ersichtlich, in welcher Weise die isolierten Produkte aus dem als Primäraddukt von Phenylmagnesiumbromid an Pyridin-N-oxid zu formulierenden Magnesiumsalz **5a'** hervorgehen: Oberhalb 0° erleidet dieses eine elektrocyclische Ringöffnung zum Magnesiumsalz **6a'**, welches durch Protonierung ins Oxim **6a** übergeht. Unterhalb 0° ist **5a'** stabil und liefert beim Ansäuern N-Hydroxy-1,2dihydropyridin (**5a**), welches allerdings nicht nachweisbar ist und sich nur in der tautomeren Form **13a** isolieren lässt. Eine direkte Bildung von **13a** aus dem Magnesiumsalz **5a'** durch Protonierung am C(5) ist nicht auszuschliessen ⁶). Das beim Ansäuern in der Kälte isolierte Bis-addukt **8** kann sich durch Addition von überschüssigem *Grignard*-Reagens an das nach partieller Hydrolyse vorliegende N-Oxid **13a** gebildet haben⁷). Die Verbindung **13a** ist instabil und geht bereits bei Zimmertemperatur unter Ringöffnung ins Oxim **6a** über. Hierbei kann die tautomere Form **5a** als Zwischenprodukt angesehen werden. Für **13a** steht die Isomerisierung zu **6a** in Konkurrenz mit der Disproportionierung zu **9a** und **10a**⁸). Dass diese Reaktion bereits bei Zimmertemperatur einsetzt, ist zwar bemerkenswert, findet aber eine Analogie in der Reaktivität von Dihydropyridiniumsalzen, welche unter ähnlich milden Reaktionsbedingungen disproportionieren [27].

Erwartungsgemäss ist die Reaktionsweise von 13a konzentrationsabhängig: Beim Erwärmen ohne Lösungsmittel entsteht bevorzugt 9a und 10a, während in verdünnter Chloroformlösung die Bildung des Oxims 6a überwiegt.

Von den isomeren Verbindungen **5a**, **6a** und **13a** ist das Oxim **6a** thermodynamisch bevorzugt. Bei hoher Temperatur muss jedoch auch die Rückreaktion **6a** \rightarrow **5a** bzw. **13a** eintreten, denn bei 160° in Cyclohexanol geht das Oxim **6a** in ein Gemisch von 2-Phenylpyridin und 2-Phenylpyridin-N-oxid (**10a**) über. Die Bildung dieser stabilen, aromatischen Produkte lässt sich am besten durch Wasserabspaltung aus **5a** bzw. durch Disproportionierung von **13a** erklären.

Die Umsetzung von Pyridin-N-oxid mit den von gesättigten Alkylhalogeniden sich ableitenden *Grignard*-Reagentien unterscheidet sich insofern von der Reaktion mit Phenyl- und Alkenylmagnesiumbromid, als nur Spuren der erwarteten Oxime **6** isoliert werden, wenn die Reaktion in der Kälte, d.h. bei oder unterhalb 0° durchgeführt wird. Die Oxime **6** lassen sich jedoch glatt, wenn auch in mässiger Ausbeute, gewinnen, wenn das Reaktionsgemisch vor dem Ansäuern kurz auf 30–35° erwärmt oder längere Zeit bei 0° aufbewahrt wird. Dies zeigt, dass die Magnesiumsalze **5**' langsamer eine elektrocyclische Ringöffnung erleiden, wenn R eine Alkylgruppe darstellt, als wenn R ein ungesättigter Rest ist, welcher mit dem Doppelbindungssystem in Konjugation zu treten vermag.

Im Falle der Umsetzung mit Methylmagnesiumbromid haben wir die beim Ansäuern in der Kälte gebildeten Produkte untersucht: Mit Äther lässt sich aus dem wässerigen Reaktionsgemisch kein Produkt extrahieren. Durch wiederholtes Auswaschen mit Chloroform bei Zimmertemperatur wird 2-Picolin-N-oxid (10b) und N-Hydroxy-1,2,5,6-tetrahydro-2-picolin (9b) zu je etwa 15% erhalten. 2,6-Dihydro-

1684

⁶⁾ Im vorliegenden Fallliegt das Tautomeriegleichgewicht N-Hydroxy-enamin (HO-N-C=C) ⇒ Nitron (O←N=C-CH) [24] vollständig auf der Seite des Nitrons, jedenfalls lässt sich auch

<sup>NMR.-spektroskopisch neben 13a kein N-Hydroxy-enamin-Tautomeres 5a nachweisen.
Zur Bildung substituierter Hydroxylamine durch Grignard-Addition an Nitrone vgl. [25].</sup>

⁸⁾ Eine Dimerisierung, wie sie z. B. bei 2, 3, 4, 5-Tetrahydropyridin-N-oxid eintritt [26], wird bei der Verbindung 13a nicht beobachtet. Möglicherweise wird ihr von der Disproportionierung zu 9a und 10a der Rang abgelaufen.

2-picolin-N-oxid (13b), der Vorläufer der isolierten Verbindungen, kann im rohen, wässerigen Hydrolysat NMR.-spektroskopisch als Hauptprodukt nachgewiesen werden. Offensichtlich ist dieses N-Oxid so polar, dass es beim Extrahieren mit Chloroform in der wässerigen Phase verbleibt. Die Produkte **9b** und **10b** werden nur in dem Masse durch Chloroform ausgezogen, in dem sie sich durch Disproportionierung von **13b** bilden.

Das Dihydropyridin-N-oxid **13b** entsteht auch durch Cyclisierung aus dem Oxim **6b**: Beim Erhitzen in Äthanol auf 80° geht **6b** in mässiger Ausbeute in ein Gemisch von **9b** und **10b** über. Dünnschichtchromatographisch und NMR.-spektroskopisch lässt sich zeigen, dass bei dieser Disproportionierungsreaktion die Verbindung **13b** als labiles Zwischenprodukt auftritt. Beim Umsetzen des Thermolyseproduktes von **6b** mit Phenylisocyanat wird das von **13b** sich ableitende Cycloaddukt **11b** (Smp. 87-89°) erhalten neben dem aus **9b** entstandenen Phenylurethan (Smp. 105-107°).

Beim Erwärmen des Oxims **6b** in Cyclohexan auf 80° bilden sich die gleichen Produkte **9b** und **10b** wie in Äthanol, nur ist in diesem Lösungsmittel das polare Zwischenprodukt **13b** nicht nachzuweisen. Das Auftreten von **13b** bei der Reaktion in Äthanol, nicht aber in Cyclohexan, lässt sich darauf zurückführen, dass die Disproportionierung in Alkohol langsamer verläuft als in Cyclohexan. Anscheinend wird die polare Nitrongruppe von **13b** in Äthanol durch Wasserstoffbrücken zum Lösungsmittel stabilisiert⁹).

Die voranstehend beschriebenen Experimente zeigen, dass zwischen Verbindungen der Struktur 5 (bzw. 13) und 6 ein Gleichgewicht besteht, dessen Lage von der Natur der Substituenten am Molekelskelett abhängt. Ist der Rest R an C(5) eine Phenylgruppe, welche ein benachbartes Doppelbindungssystem durch Konjugation zu stabilisieren vermag, so ist das Dienaldoxim 6 das bevorzugte Isomere.

Ist R hingegen eine zur Konjugation nicht fähige Methylgruppe, so ist die cyclische Form 5 (bzw. 13) stabiler. Ein Ersatz des Wasserstoffs der OH-Gruppe in 5 oder 6 durch Magnesium hat eine Verschiebung der Gleichgewichtslage in Richtung auf das ringoffene Isomere 6 zur Folge. Dies kann auf ein Nachlassen der abstossenden Wechselwirkung freier Elektronenpaare auf benachbarten Atomen beim Übergang von 5 nach 6 zurückgeführt werden, welche sich im Magnesiumsalz stärker bemerkbar macht als in der entsprechenden Hydroxylverbindung.

In der vorliegenden Arbeit wurde gezeigt, dass sich Grignard-Reagentien an Pyridin-N-oxid unter Aufspaltung oder unter Erhaltung des heterocyclischen Ringes addieren. Durch die Wahl der Reaktionsbedingungen ist es möglich, den Reaktionsverlauf in die eine oder andere Richtung zu lenken. Durch die beschriebene Reaktion lassen sich Aryl- und Alkylhalogenide stereoselektiv in (2Z, 4E)-Pentadien-(E)aldoxime überführen; dies entspricht einer Kettenverlängerung des Halogenids um fünf C-Atome.

Für die Unterstützung dieser Untersuchung durch die Firma Ciba-Geigy AG sowie durch den Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung (Projekt 2.396.70) sei an dieser Stelle bestens gedankt.

⁹) Die aus 13b neben 9b und 10b sich bildenden, polymeren Produkte wurden nicht untersucht. Vgl. [26].

Experimenteller Teil

1. Allgemeines – Alle Smp. wurden auf dem Kofler-Block bestimmt und sind korrigiert, Fehlergrenze $\pm 2^{\circ}$. Die Elementaranalysen wurden im Mikrolaboratorium unseres Instituts durch Herrn E. Thommen ausgeführt. Die 60 MHz-NMR.-Spektren wurden auf einem Varian A-60 bzw. T-60 Spektrometer im Institut für organische bzw. pharmazeutische Chemie der Universität Basel, die 100 MHz-Spektren auf einem HA-100 im Institut für physikalische Chemie der Universität Basel aufgenommen. Die Lage der Signale wird in ppm, bezogen auf internes Tetramethylsilan ($\delta = 0$) angegeben. Die Buchstaben s, d, t, q, qi, m und br bedeuten Singulett, Dublett, Triplett, Quartett, Quintett, Multiplett und breit. Bei UV.-Spektren Angaben in nm (ϵ), bei IR.-Spektren in cm⁻¹.

2. Oxime aus Aldehyden. – 2.1 2-(2-Phenyl-(E)-äthenyl)-cyclohex-1-en-(E)-carbaldoxim (1). 2-(2-Phenyl-(E)-äthenyl)-cyclohex-1-encarbaldehyd [3] vom Smp. 80–82° liefert mit Hydroxylaminhydrochlorid und Natriumacetat in wässerigem Äthanol das Oxim 1: Aus Äther/Petroläther farblose dicke Nadeln vom Smp. 143–145°. – UV. $(iso-C_8H_{18}): \lambda_{max}$ 320 (34000), 240 (17000). – IR. $(CCl_4):$ 3580, 3300, 1600, 950. – NMR. $(CDCl_3):$ 1,5–1,9 br, 4 H $(CH_2):$ 2,2–2,6 br, 4 H (allylische CH₂-Gruppe): 6,7 d, 1H (J = 16 Hz) (CH=CH): 7,2–7,6 m, 6 H (CH=CH und Aryl-H): 8,62 s, 1H (CH=N): 8,99 s, 1H (OH).

 $C_{15}H_{17}NO(227,29)$ Ber. C 79,26 H 7,54 N 6,16% Gef. C 79,41 H 7,58 N 6,31%

2.2 2-(2-Phenyl-(Z)-äthenyl)-cyclohex-1-en-(E)-carbaldoxim (3). Eine äthanolische Lösung von 1,30 g 2-(2-Phenyläthinyl)-cyclohex-1-encarbaldehyd vom Smp. 47–50° [3] wird wie üblich mit Hydroxylaminhydrochlorid und Natriumacetat in wässerigem Äthanol ins Oxim übergeführt: 1,64 g dicke, farblose Nadeln, Smp. nach Umkristallisation aus wässerigem Äthanol und aus Benzol/Petroläther: 133–135°. – UV. $(C_2H_5OH): \lambda_{max}$ 320 (19000), 303 (26500), 239 (18500).

C₁₅H₁₅NO (225,27) Ber. C 79,97 H 6,71 N 6,22% Gef. C 80,13 H 6,81 N 6,04%

Bei der Hydrierung von 984 mg dieses Oxims in 8 ml Äthylacetat über 150 mg 10proz. Pd/C bei Normaldruck wird ein Äqu. Wasserstoff innert 5 Min. aufgenommen. Nach dem Abfiltrieren vom Katalysator wird das Lösungsmittel entfernt und der Rückstand mehrmals aus Äthanol/Wasser und Äther/Petroläther umkristallisiert. Es werden 490 mg 2-(2-Phenyl-(Z)-äthenyl)-cyclohex-1-en-(E)-carbaldoxim (**3**) als farblose Prismen vom Smp. 121–124° erhalten. – UV. (C₂H₅OH): λ_{max} 280 Schulter (12000), 260 Schulter (14000), 242 (21000). – IR. (CCl₄): 3590, 3300, 1600, 950, 940. – NMR. (CDCl₃): 1,5–1,8 br, 4H (CH₂); 2,0–2,4 br, 4H (allylische CH₂-Gruppe); 6,2 d br, 1H und 6,45 d, 1H (J = 12,5 Hz) ((Z)-CH=CH); 7,1–7,3 m, 5H (Aryl-H); 8,10 s, 1H (CH=N); 9,02 br s, 1H (OH).

C₁₅H₁₇NO (227,29) Ber. C 79,26 H 7,54 N 6,16% Gef. C 79,32 H 7,71 N 5,99%

2.3 (2E, 4E)-Hexa-2, 4-dien-(Z)-aldoxim (14). (E, E)-Sorbinaldehyd wird wie üblich mit Natriumacetat und Hydroxylaminhydrochlorid in wässerigem Äthanol ins Oxim übergeführt. Dieses fällt in farblosen Kristallen vom Smp. 140–150° an, welche ein NMR.-Signal in $(CD_3)_2$ SO bei 7,76 ppm, d, 1H (J = 10 Hz) (N=CH) zeigen ((E) (syn)-Aldoxim). Mehrmaliges Umkristallisieren aus Äther/Petroläther liefert farblose Nadeln der (Z)-Form vom Smp. 150–151°. ([14]: Smp. 159,5–161,5°). – UV. (C_2H_5 OH): λ_{max} 266 (31000). – IR. (KBr): 1620, 1000, 925. – NMR. (($CD_3)_2$ SO): 1,74 d, 3H (J = 7 Hz) (CH₃-6); 5,7–7,4 m, 4H (Vinyl-H); 7,18 d, 1H (J = 10 Hz) (N=CH); 11,25 s, 1H (OH).

C₆H₉NO (111,14) Ber. C 64,84 H 8,16 N 12,60% Gef. C 64,68 H 8,41 N 12,51%

Das Dinitrophenylhydrazon kristallisiert aus Chloroform in roten Nadeln vom Smp. 195–197°. Misch-Smp. mit dem Dinitrophenylhydrazon des (E, E)-Sorbinaldehyds: 193–197°.

3. Allgemeine Vorschrift zur Herstellung der Oxime 6 durch Addition von Grignard-Reagentien an Pyridin-N-oxid. – Eine Lösung von 0,1 mol *Grignard*-Reagens in *ca.* 100 ml Tetrahydrofuran wird unter Stickstoff auf -20° vorgekühlt. Unter intensivem Rühren werden 5,0 g (0,053 mol) Pyridin-N-oxid in 50 ml Tetrahydrofuran bei -20° zugetropft. Das Gemisch wird 12 Std. bei 0° stehen gelassen oder während 15 Min. auf $30-35^{\circ}$ erwärmt. Bei 0° wird mit 50 ml ges. Ammoniumchloridlösung versetzt und 2mal mit Äther extrahiert. Die organische Phase wird mehrmals mit 2N Natronlauge ausgewaschen. Der basische Extrakt wird mit Salzsäure angesäuert und mit Äther ausgezogen. Die organische Lösung wird mit Wasser und ges. Kochsalzlösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Die Oxime **6h** und **6i** lassen sich nur teilweise mit Natronlauge aus Äther extrahieren. Zu ihrer Isolierung wird der ätherische Extrakt des hydrolysierten Reaktionsgemisches mit 1n Salzsäure, Wasser und ges. Kochsalzlösung gewaschen, über Natriumsulfat getrocknet und eingeengt.

Mit schwefelsaurer Dinitrophenylhydrazinlösung [28] bilden sich in Äthanol aus den gereinigten Oximen die entsprechenden, schwer löslichen Dinitrophenylhydrazone.

3.1 5-Phenyl-(2Z,4E)-penta-2,4-dien-(E)-aldoxim (**6a**). Umkristallisation des Rohproduktes aus Äther/Petroläther liefert 4,2 g (46% d.Th.) blassgelbe Nadeln vom Smp. 125–127°. Nach mehrmaligem Umlösen aus demselben Lösungsmittelgemisch steigt der Smp. auf 131–132°. – UV. (C₂H₅OH): λ_{max} 325 Schulter (33000); 314 (41500) 235 (14800). – IR. (Nujol): 1610, 990, 950, 749, 690. – NMR.: s. Tabelle 1 und [9].

C₁₁H₁₁NO (173,14) Ber. C 76,27 H 6,40 N 8,09% Gef. C 76,11 H 6,52 N 7,92%

3.2 (2Z, 4E)-Hexa-2, 4-dien-(E)-aldoxim (**6**b). Rohprodukt: 1,83 g (31%) blassgelbe Kristalle vom Smp. 60–65°. Umkristallisation aus Petroläther liefert farblose Nadeln vom Smp. 65–67°. – UV. (C₂H₅OH): λ_{max} 265 (30000). – IR. (KBr): 1635, 990, 955. – NMR. (CDCl₃): 1,87 d, 3H (J = 7 Hz) (CH₃(6)); 5,8–6,1 m, 2H und 6,2–6,6 m, 2H (H(2)–H(5)); 8,26 d, 1H (J = 10 Hz) (H(1)); 9,1 br, 1H (OH).

C₆H₉NO (111,13) Ber. C 64,84 H 8,16 N 12,60% Gef. C 65,01 H 8,32 N 12,50%

Dinitrophenylhydrazon: Aus Äthanol purpurrote, feine Nadeln vom Smp. 163-165°.

 $C_{12}H_{12}N_4O_4\ (276,23) \qquad \text{Ber. C } 52,17 \quad H \ 4,38 \quad N \ 20,28\% \qquad \text{Gcf. C } 52,32 \quad H \ 4,42 \quad N \ 20,06\%$

3.3 (2Z, 4E)-Hexa-2, 4-dien-(Z)-aldoxim (14). 900 mg Oxim 6b wird in 10 ml abs. Äther gelöst. In diese Lösung wird trockenes Salzsäuregas solange eingeleitet, bis kein Niederschlag mehr ausfällt. Das Gemisch wird filtriert, der farblose kristalline Rückstand in wenig Äther suspendiert und mit 2N Sodalösung ausgewaschen. Die organische Phase wird abgetrennt, über Magnesiumsulfat getrocknet und eingeengt. Kristallisation des Rückstandes aus Benzol liefert 170 mg Oxim 14 vom Smp. 102–106°. Nach mehrmaligem Umkristallisieren steigt der Smp. auf 108–111°. – UV. (C₂H₅OH): 267 (28000). – IR. (KBr): 3300–3100, 1620, 955. – NMR. ((CD₃)₂SO): 1,82 d, 3H (J = 7 Hz) und 5,95 d×q, 1H (J = 10 Hz, 7 Hz) (=CH–CH₃); 6,2–6,8 m, 3H (Vinyl-H); 7,56 d, 1H (J = 10 Hz) (H(1)); 11,05 s, 1H (OH).

C₆H₉NO (111,13) Ber. C 64,84 H 8,16 N 12,60% Gef. C 64,71 H 8,08 N 12,75%

Dinitrophenylhydrazon: Rote Nadeln aus Äthanol, Smp. 162–164°, Misch-Smp. mit dem aus **6b** bereiteten Derivat: 161–164°.

3.4 (2Z, 4E)-Hepta-2, 4-dien-(E)-aldoxim (6c). Destillation des Rohproduktes bei 60-70°/ 0,01 Torr im Kugelrohr liefert 1,60 g (24%) Oxim als farbloses Öl, welches in der Kälte erstarrt und dann bei - 16 bis - 11° schmilzt. - UV. (C₂H₅OH): λ_{max} 266 (28000). - IR. (Film): 3600-3100, 1640, 990, 950. - NMR. (CDCl₃): 1,06 t, 3H und 2,20 qi, 2H (J = 7 Hz) (=C-CH₂-CH₃); 5,7-6,9 m, 4H (H(2)-H(5)); 8,31 d, 1H (J = 10 Hz) (H(1)); 7,1-8,2 br, 1H (OH).

 $C_7H_{11}NO~(125,17) \qquad \text{Ber. C } 67,17 \quad \text{H } 8,86 \quad \text{N } 11,19\% \qquad \text{Gef. C } 67,27 \quad \text{H } 8,78 \quad \text{N } 11,39\%$

Dinitrophenylhydrazon: Aus Äthanol rote Nadeln vom Smp. 141-143°

C₁₃H₁₄N₄O₄ (290.25) Ber. C 53,79 H 4,86 N 19,30% Gef. C 53,80 H 4,90 N 19,33%

3.5 (2Z, 4E)-Octa-2, 4-dien-(E)-aldoxim (6d). Destillation des Rohproduktes im Kugelrohr bei 60-80°/0,08 Torr liefert 1,61 g (22%) farbloses Öl, welches in der Kälte erstarrt. Nach Kristallisation aus Petroläther: Farblose Prismen vom Smp. 25-28°. – UV. (C_2H_5OH): 268 (29000). – IR. (Film): 3500-3100, 1630, 960. – NMR. ((CD_3)₂SO): 0,9 t, 3H, 1,4 m, 2H und 2,1 q, 2H (J =7 Hz) ($CH_2CH_2CH_3$); 5,6-6,9 m, 4H (Vinyl-H); 8,24 d, 1H (J = 10 Hz) (H(1)); 11,0 s, 1H (OH).

 $\mathrm{C_8H_{13}NO}\;(139{,}19) \qquad \mathrm{Ber.}\;\; \mathrm{C}\;69{,}03 \quad \mathrm{H}\;9{,}41 \quad \mathrm{N}\;10{,}06\,\% \qquad \mathrm{Gef.}\;\; \mathrm{C}\;69{,}28 \quad \mathrm{H}\;9{,}67 \quad \mathrm{N}\;10{,}30\,\%$

Dinitrophenylhydrazon: Rote Nadeln, aus Äthanol, Smp. 137-139°.

C₁₄H₁₆N₄O₄ (304,27): Ber. C 55,25 H 5,30 N 18,41% Gef. C 55,11 H 5,39 N 18,66%

3.6 6-Methyl-(2Z, 4E)-hepta-2, 4-dien-(E)-aldoxim (6e). Nach Destillation des Rohproduktes im Kugelrohr bei 80–90°/0,08 Torr wird 1,12 g (15%) Oxim als farbloses Öl erhalten. - UV.

 (C_2H_5OH) : 267 (32000). – IR. (Film): 3500–3100, 1630, 1000, 955. – NMR. ((CD₃)₂SO): 1,0 d, 6H (J = 7 Hz); 2,0–2,9 m, 1H (CH(CH₃)₂); 5,7–6,7 m, 4H (Vinyl-H); 8,25 d, 1H (J = 11 Hz) (H(1)); 11,03 s, 1H (OH).

C₈H₁₃NO (139,19) Ber. C 69,03 H 9,41 N 10,06% Gef. C 69,28 H 9,51 N 9,93%

Das Dinitrophenylhydrazon kristallisiert aus Äthanol in roten Nadeln vom Smp. 164–166°.

 $C_{14}H_{16}N_4O_4 \ (304,27) \qquad \text{Ber. C } 55,25 \quad \text{H } 5,30 \quad \text{N } 18,41\% \qquad \text{Gef. C } 55,10 \quad \text{H } 5,18 \quad \text{N } 18,19\%$

3.7 (2Z, 4E)-Nona-2, 4-dien-(E)-aldoxim (**6f**). Nach Destillation des Rohproduktes im Kugelrohr bei 80-90°/0,06 Torr werden 2,03 g (25%) Oxim als farbloses, in der Kälte erstarrendes Öl erhalten. Zur Analyse wird aus Äther/Petroläther umkristallisiert und nochmals destilliert. Smp. -10 bis -5°. - UV. (C₂H₅OH): 268 (28000). - IR. (Film): 3500-3100, 1625, 950. - NMR. ((CD₃)₂SO): 0,7-1,0 m, 3 H; 1,1-1,5 m, 4 H und 1,9-2,3 m, 2 H (CH₂CH₂CH₂CH₃); 5,7-6,7 m, 4 H (Vinyl-H); 8,25 d, 1 H (J = 10 Hz) (H(1)); 11,05 s, 1 H (OH).

C₉H₁₅NO (153,22) Ber. C 70,55 H 9,87 N 9,14% Gef. C 70,30 H 10,00 N 9,00%

Das Dinitrophenylhydrazon kristallisiert aus Äthanol in roten Nadeln vom Smp. 147–148,5°.

 $C_{15}H_{18}N_4O_4$ (318,30) Ber. C 56,59 H 5,70 N 17,61% Gef. C 56,67 H 5,66 N 18,17%

3.8 7-Methyl-(2Z, 4E)-octa-2, 4, 6-trien-(E)-aldoxim (6g). Umkristallisation des Rohproduktes aus Benzol liefert 3,20 g (40%) blassgelbe Nadeln vom Smp. 122-124°. – UV. (C₂H₅OH): λ_{max} 318 (42000), 304 (47000). – IR. (KBr): 1595, 980, 940. – NMR. (CDCl₃): 1,84 s, 6 H (=C(CH₃)₂); 5,8-6,7 m, 5 H (Vinyl-H); 8,27 d, 1 H (J = 10 Hz) (H(1)); 10,24 s, 1 H (OH).

C₉H₁₃NO (151,20) Ber. C 71,49 H 8,67 N 9,26% Gef. C 71,37 H 8,56 N 9,19%

3.9 7-Phenyl-(2Z, 4E, 6E)-hepta-2, 4, 6-trien-(E)-aldoxim (**6h**). Durch Chromatographie an Kieselgel (Elutionsmittel: Benzol/Äther 90:10) und Umkristallisation aus Benzol werden 6,8 g (64%) blassgelbe feine Nadeln vom Smp. 139–142° erhalten. Nach mehrmaligem Umkristallisieren aus Benzol steigt der Smp. auf 149–151°. – UV. (C_2H_5OH): λ_{max} 355 (54000), 338 (65000), 324 (46000), 253 (12000). – IR. (KBr): 990, 970. – NMR. ((CD₃)₂SO): 5,8–7,7 m, 11H (Vinyl-H und Aryl-H); 8,40 d, 1H (J = 10 Hz) (H(1)); 11,07 s, 1H (OH).

C₁₃H₁₃NO (199,23) Ber. C 78,36 H 6,58 N 7,03% Gef. C 78,58 H 6,59 N 7,00%

3.10 7-Phenyl-(2Z, 4E)-hepta-2, 4-dien-6-in-(E)-aldoxim (6i). Chromatographie des Rohproduktes an Kieselgel, Elution mit Benzol/Äther 80:20 und Kristallisation aus Methanol/Wasser liefert 2,05 g (20%) blassgelbe Prismen vom Smp. 102-103,5° – UV. (C_2H_5OH): λ_{max} 341 (35000), 323 (42000), 246 (11300). – IR. (CHCl₃): 2200, 940. – NMR. ((CD₃)₂SO): 5,9–6,7 m, 3H (H(2), H(3) und H(5)); 7,2–7,6 m, 6H (H(4) und Aryl-H); 8,40 d, 1H (J = 10 Hz) (H(1)); 11,30 s, 1H (OH).

C₁₃H₁₁NO (197,22) Ber. C 79,16 H 5,62 N 7,10% Gef. C 79,20 H 5,70 N 7,20%

4. Thermolyse der Oxime. – 4.1 Thermolyse von 2-(2-Phenyl-(Z)-äthenyl)-cyclohex-1-en-(E)carbaldoxim (3). – a) Eine Lösung von 557 mg (Z)-Oxim 3 in 20 ml Isooctan wird während 6 Std. unter Rückfluss erhitzt. Die warme Lösung wird auf die Hälfte eingeengt und abgekühlt, worauf 314 mg (E)-Oxim 1 vom Smp. 135–140° auskristallisieren. Durch Umkristallisation aus Äther/ Petroläther steigt der Smp. auf 143–145°.

b) Eine Lösung von 240 mg (Z)-Oxim **3** in 50 ml Isobutanol wird unter Rückfluss erhitzt. Nach 30 Min. hat sich zu etwa 50% das (E)-Isomere **1** gebildet (ε_{317} : 14000). Nach 3 Std. ist im UV.-Spektrum kein Absorptionsmaximum bei 317 nm mehr zu erkennen. Die Lösung wird eingeengt und der braune, ölige Rückstand an 12 g Kicselgel chromatographiert. Mit Benzol/Äther 95:5 werden 150 mg 3-Phenyl-5,6,7,8-tetrahydrochinolin (**4**) eluiert. Farbloses Öl, vom Sdp. 100-110°/0,01 Torr im Kugelrohr. – UV. (C_2H_5OH): λ_{max} 276 (10600), 249 (17200). – NMR. (CCl₄): 1,7–1,9 m, 4H (CH₂); 2,5–2,7 m, 4H (Aryl-CH₂); 7,2–7,5 m, 4H; 7,8–8,1 m, 2H (Aryl-H); 8,25 s, 1H (H(1)). C₁₅H₁₅N (209,30) Ber. N 6,69% Gef. N 6,81%

Das in Äther hergestellte Pikrat kristallisiert aus Methanol in feinen gelben Nadeln vom Smp. 201–204°.

C₂₁H₁₈N₄O₇ (438,35) Ber. C 57,53 H 4,14 N 12,78% Gef. C 57,23 H 4,18 N 12,56%

4.2 Thermolyse von 5-Phenyl-(2Z, 4E)-penta-2, 4-dien-(E)-aldoxim (6a). Eine Lösung von 650 mg Oxim 6a in 50 ml Cyclohexanol wird während 18 Std. unter Rückfluss gehalten. Das Lösungsmittel wird bei 11 Torr über eine 10 cm Vigreux-Kolonne zum grössten Teil entfernt. Destillation des Rückstandes (3,3 g) im Kugelrohr liefert zwei Fraktionen:

1: 60–140°/11 Torr: 2,5 g farbloses Öl (hauptsächlich Cyclohexanol), welches in Äther gelöst und mit 2N Salzsäure ausgewaschen wird. Nach Neutralisation mit Natronlauge lassen sich aus dem wässerigen Extrakt 150 mg hellbraunes Öl isolieren. Destillation im Kugelrohr bei 80–100°/ 11 Torr liefert 106 mg 2-Phenylpyridin [4] (Pikrat: Smp. 173–177°).

2: 70-180°/0,02 Torr: 424 mg gelbes, halbkristallines Produkt. Chromatographie an 20 g Kieselgel liefert durch Elution mit Benzol/Äther 95:5 weitere 70 mg 2-Phenylpyridin. Elution mit Benzol/Äther 90:10 liefert 68 mg eines Gemisches von 2-Phenylpyridin und Oxim **6a**. Mit 2-Propanol werden 160 mg Kristalle eluiert, welche nach Sublimation bei 160°/0,01 Torr 150 mg 2-Phenylpyridin-N-oxid vom Smp. 156-158° [29] ergeben.

4.3 Thermolyse von (2Z, 4E)-Hexa-2, 4-dien-(E)-aldoxim (**6b**). Eine Lösung von 300 mg Oxim **6b** in 40 ml Cyclohexan wird während 4 Std. unter Rückfluss gehalten. Das Lösungsmittel wird abgedampft und der Rückstand an 15 g Kieselgel chromatographiert. Mit Benzol/Äther 50:50 wird 90 mg farbloses Öl eluiert. Destillation im Kugelrohr liefert 64 mg 1-Hydroxy-1, 2, 5, 6-tetrahydro-2-picolin (**9b**) als farbloses Öl, welches in der Kälte erstarrt und dann bei 37-39° schmilzt. – UV. (C₂H₅OH): 267 (480). – IR. (Film): 3500-3300, 1656, 930, 810, 730, 680. – NMR. (CDCl₃): 1,27 d, 3H (J = 7 Hz) (CH₃C(2)); 2,15 br d und 2,45 br d, 2H (J = 18 Hz) (AB Signal der H(5)); 2,7-3,0 m, 1H und 3,2-3,4 m, 2H (H(2) und H(6)); 5,42 br d und 5,63 br d, 2H (J = 9,5 Hz) (CH=CH); 8,4 br s, 1H (OH).

C₆H₁₁NO (113,16) Ber. C 63,68 H 9,80 N 12,37% Gef. C 63,73 H 9,79 N 12,61%

Wird eine Lösung des Oxims **6b** in Äthanol unter Rückfluss erhitzt, so lassen sich nach 2 Std. im Dünnschichtchromatogramm (Kieselgel, Chloroform/2-Propanol 92:8) neben wenig Oxim **6b** (Rf = 0,48), **1**-Hydroxy-tetrahydro-picolin **9b** (Rf = 0,31) und 2-Picolin-N-oxid **10b** (Rf = 0,21) nachweisen. Überdies ist ein starker Fleck mit einem Rf-Wert von 0,14 zu erkennen. Das Lösungsmittel wird bei 0° und 0,1 Torr abgezogen. Im NMR.-Spektrum des Rückstandes (CDCl₃, -10°) sind neben den Signalen von **6b**, **9b** und **10b** die folgenden Signale von 2-Methyl-2,5-dihydropyridin-N-oxid (**13b**) (35%) zu erkennen (relative Intensitäten der Integralwerte): 1,60 d, 3H (J = 7 Hz) (CH₃-C(2)); 3,0-3,2 m, 2H (H(5)), 4,30 q, 1H (J = 7 Hz) (H(2)); 5,77 s, 2H (CH=CH). Das Signal für das H(6) fällt mit den Aryl-H Signalen von **10b** bei 7,1-7,3 ppm zusammen.

Nach 4stdg. Kochen von 1,20 g Oxim **6b** in 35 ml Äthanol unter Rückfluss wird das Lösungsmittel bei 0°/0,1 Torr entfernt und der Rückstand in 10 ml Tetrachlorkohlenstoff bei -10° mit 0,9 g Phenylisocyanat versetzt. Nach 12 Std. bei -10° wird das Lösungsmittel entfernt und das verbleibende Harz an 60 g Kieselgel chromatographiert. Mit Benzol/Äther 98:2 lassen sich 490 mg halbkristallines Harz eluieren. Mehrmaliges Umkristallisieren aus Äther liefert daraus 128 mg des von **9b** sich ableitenden Phenylurethans vom Smp. 105-107°. – UV. ($C_{2}H_{5}OH$): 270 (800); 232 (17300). – IR. (CHCl₃): 3320, 3000–2860b, 1730, 1600, 1510, 1450, 1170, 1000. – NMR. (CDCl₃): 1,20 d, 3H (J = 7 Hz) (CH₃C(2)); 2,2–2,5 m, 2H (H(5)); 3,0–3,8 m, 3H (H(2) und H(6)); 5,5–5,9 m, 2H (CH=CH); 7,0–7,5 m, 5H (Aryl-H); 9,8 br, 1H (NH).

C₁₃H₁₆N₂O₂ (232,28) Ber. C 67,22 H 6,94 N 12,06% Gef. C 67,09 H 7,15 N 12,08%

Mit Benzol/Äther 95:5 werden 305 mg farblose Kristalle vom Smp. 75-85° eluiert. Kristallisation aus Äther liefert daraus 168 mg Cycloaddukt **11b** als farblose, längliche Prismen vom Smp. 87-89°. – UV. (C_2H_5OH): λ_{max} 260 Schulter, 238 (7600). – IR. (CCl₄): 1780, 1600, 1505, 1370, 980, 690. – NMR. (CDCl₃): 1,41 d, 3H (J = 7 Hz) (CH₃C(2)); 2,2-2,7 m, 2H(H(5)); 3,7 br q, 1H (J = 7 Hz) (H(2)); 5,55 $d \times d$, 1H (J = 6 Hz, 3 Hz) (H(6)); 5,65 br s, 2H (CH=CH); 7,0-7,5 m, 5H (Aryl-H).

C₁₃H₁₄N₂O₂ (230,27) Ber. C 67,81 H 6,13 N 12,17% Gef. C 67,97 H 6,32 N 12,25%

5. Umsetzung von Pyridin-N-oxid mit Grignard-Reagentien in der Kälte. – 5.1 Reaktion mit Phenylmagnesiumbromid. Bei einem Ansatz wie unter 3 beschrieben erfolgt die Zugabe des Pyridin-N-oxids (5,0 g) zum Phenyl-Grignard-Reagens unter starkem Rühren bei – 50°. Nach 1stdg. Rühren bei derselben Temperatur wird bei – 50° mit 50 ml ges. Ammonium-

chloridlösung hydrolysiert und mit 100 ml Äther versetzt. Nach Erwärmen auf -15° wird die organische Phase abgetrennt, über Natriumsulfat getrocknet und eingedampft. Chromatographie des Rückstandes (2,5 g) an Kieselgel liefert durch Elution mit Benzol/Äther 90:10 390 mg N-Hydroxy-2,6-diphenyl-1,2,5,6-tetrahydropyridin **8**. Umkristallisation aus Äther/Petroläther ergibt farblose Plättchen vom Smp. 136–137°. – UV. (C₂H₅OH): 262, 256 (500), 250. – IR. (CHCl₃): 3580, 3500–3300 br, 1600, 1495, 1455. – NMR. (CDCl₃): 2,4 br d, 1H und 2,8 br d, 1H (J = 18 Hz) (H(5)); 3,78 $d \times d$, 1H (J = 6 Hz, 8 Hz) (H(6)); 4,18 br s, 1H (H(2)); 5,77 br d, 1H und 6,18 br d, 1H (J = 11 Hz) (CH–CH); 6,98 s, 1H (OH); 7,1–7,4 br s, 10H (Aryl-H).

C₁₇H₁₇NO (251,32) Ber. C 81,25 H 6,82 N 5,57% Gef. C 81,18 H 6,81 N 5,78%

Die vom Äther abgetrennte, wässerige Phase wird bei -10° mehrmals mit Chloroform extrahiert. Nach dem Eindampfen der getrockneten Chloroformauszüge verbleiben 6,6 g eines halbkristallinen Produkts. Ein Aliquot desselben (720 mg) wird bei RT. an 35 g Kieselgel chromatographiert. Mit Benzol/Äther 95:5 werden 77 mg Oxim **6a** eluiert (Smp. nach Umkristallisation: 125-127°). Mit Benzol/Äther 75:25 werden 201 mg N-Hydroxy-2-phenyl-1,2,5,6-tetrahydropyridin (**9a**) eluiert. Aus Äther/Petroläther farblose Prismen vom Smp. 104-105°. – UV. (C₂H₅OH): λ_{max} 266 (120), 262 (180), 256 (225), 250 (200), 245 (165), 240 (140). – IR. (CHCl₃): 3580, 3400-3100, 1495, 900, 860. – NMR. (CDCl₃): 2,1-2,4 br, 2H (H(5)); 2,7-2,9 m, 2H (H(6)); 4,1 br s, 1H (H(2)); 5,45 br d, 1H und 5,70 d, 11I (J = 10 Hz) (CH=CH); 7,1 br s, 1H (OH); 7,25 s, 5H (Aryl-H).

 $C_{13}H_{13}NO(175,23)$ Ber. C 75,40 H 7,48 N 7,99% Gef. C 75,64 H 7,65 N 7,99%

Beim Eluieren mit 2-Propanol werden 198 mg 2-Phenylpyridin-N-oxid (**10**a) erhalten. Aus Chloroform/Äther feine Nadeln vom Smp. 156–158° (Lit [29] Smp. 155–156°).

C₁₁H₈N (171,90) Ber. C 77,17 1I 5,30 N 8,18% Gef. C 76,91 H 5,18 N 8,20%

Bei einem Ansatz gleicher Grösse wird die nach Hydrolyse bei -50° und Extraktion mit Äther bei -10° verbleibende wässerige Phase einmal mit 100 ml Chloroform ausgezogen. Ein 20 ml Aliquot dieser Chloroformlösung liefert nach Abdampfen des Lösungsmittels bei -10° und 0,01 Torr ca. 0,7 g 2-Phenyl-2,5-dihydropyridin-N-oxid (**13a**) als farblosen Festkörper, der folgende spektrale Eigenschaften zeigt: UV. (C₂H₅OH): λ_{max} 245 (4000). – NMR.(CDCl₃): 3,1–3,3 br m, 2H (H(5)); 5,2–5,4 br m, 1H (H(2)); 5,7–5,9 m, 21I (CH=CH); 7,22 t, 1H (J = 4 Hz) (H(6)); 7,38 s, 5H (Aryl-H).

Ein zweites 20 ml Aliquot wird nach Abdampfen des Lösungsmittels bei -15° mit 500 mg Phenylisocyanat in 1 ml Chloroform versetzt. Nach 24 Std. bei -10° wird das Lösungsmittel entfernt. Umkristallisation des Rückstandes liefert 704 mg Cycloaddukt 11 in Form farbloser Prismen vom Smp. 104,5–106°. – UV. (C_2H_5OH): λ_{max} 227 (8100), Schultern bei 270, 265, 260, 255 (810). – IR. (KBr): 1758, 1599, 1500, 1230, 850, 750, 690. – NMR. (CCl₄): 2,3–2,4 m, 2H (H(5)); 4,66 br s, 1H (HC(2)); 5,50 d×d, 1H (J = 3 Hz, 5,5 Hz) (H(6)); 5,77 br s, 2H (CH=CH); 7,1–7,5 m, 10 H (Aryl-H).

C₁₈H₁₆N₂O₂ (292,24) Ber. C 73,95 H 5,52 N 9,58% Gef. C 73,84 H 5,75 N 9,51%

Der Rest des Chloroformextrakts (60 ml) wird eine Woche bei Zimmertemperatur stehen gelassen. Nach dem Abdampfen des Lösungsmittels verbleiben 2,2 g braunes Harz. Daraus lassen sich durch Chromatographie an Kieselgel 900 mg Oxim **6a**, 180 mg Tetrahydropyridin **9a** und 260 mg 2-Phenylpyridin-N-oxid **10a** isolieren.

5.2 Reaktion mit Methylmagnesiumbromid. 5,0 g Pyridin-N-oxid wird, wie unter 5.1 beschrieben, bei -40° mit Methylmagnesiumbromid umgesetzt. Nach Hydrolyse mit ges. Ammoniumchloridlösung bei -40° wird durch mehrfaches Auswaschen bei 25° mit Chloroform 3,05 g blassgelbes Harz erhalten. Destillation im Kugelrohr bei 90–100°/0,04 Torr liefert 1,36 g farbloses Destillat, welches im Dünnschichtchromatogramm (Kieselgel, Chloroform/2-Propanol 90:10) zwei Flecken zeigt mit den gleichen Rf-Werten wie 1-Hydroxy-1,2,5,6-tetrahydro-2-picolin (**9b**) (Rf = 0,31) und 2-Picolin-N-oxid (**10b**) (Rf = 0,21). Nach dem NMR.-Spektrum besteht dieses Destillat je etwa zur Hälfte aus **9b** und **10b**.

In einem gleichen Versuch wird das hydrolysierte, wässerige Reaktionsgemisch bei 0° am Hochvakuum eingeengt und restliches H₂O entfernt durch 2maliges Abdampfen mit D₂O. NMR.-

spektroskopisch lassen sich in diesem Gemisch die folgenden Produkte erkennen: Pyridin-N-oxid (18%), 2-Picolin-N-oxid (10b) (11%), 2, 5-Dihydro-2-picolin-N-oxid (13b) (59%) und N-Hydroxy-1, 2, 5, 6-tetrahydro-2-picolin (9b) (12%).

LITERATURVERZEICHNIS

- [1] P. Schiess, Helv. 55, 2365 (1972) und frühere Arbeiten.
- [2] P. Schiess, H. L. Chia & P. Ringele, Tetrahedron Letters 1972, 313.
- [3] P. Schiess, R. Seeger & Chr. Suter, Helv. 53, 1713 (1970).
- [4] T. Kato & H. Yamanaka, J. org. Chemistry 30, 910 (1965); T. Kato, H. Yamanaka, T. Adachi & H. Hiranuma, ibid. 32, 3788 (1967).
- [5] R. Eisenthal & A. R. Katritzky, Tetrahedron 21, 2205 (1965).
- [6] R. Eisenthal, A. R. Katritzky & E. Lunt, Tetrahedron 23, 2775 (1967).
- [7] G. Okusa, M. Kumagai & T. Itai, Chem. Commun. 1969, 710; H. Igeta, T. Tsuchiya & T. Nakai, Tetrahedron Letters 1969, 2667.
- [8] P. Schiess, P. Ringele & H. L. Chia, Chimia 24, 24 (1970); P. Schiess & P. Ringele, Tetrahedron Letters 1972, 311.
- [9] T. J. van Bergen & R. M. Kellogg, J. org. Chemistry 36, 1705 (1971).
- [10] J. F. Brown, J. Amer. chem. Soc. 77, 6341 (1955).
- [11] G. G. Kleinspehn, J. A. Jung & S. A. Studniarz, J. org. Chemistry 32, 460 (1967).
- [12] R. E. Rondeau & R. E. Sievers, J. Amer. chem. Soc. 93, 1522 (1971).
- [13] B. Unterhalt, Arch. Pharm. 299, 274 (1966); 303, 661 (1970).
- [14] R. Kuhn & M. Hoffer, Ber. deutsch. chem. Ges. 64, 1977 (1931).
- [15] L. M. Jackman & S. Sternhell, 'Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry', 2nd. ed. Pergamon Press, 1969, S. 71.
- [16] K. C. Chan, R. A. Jewell, W. H. Nutting & H. Rapoport, J. org. Chemistry 33, 3382 (1968);
 D. E. McGreer & B. D. Page, Can. J. Chemistry 47, 866 (1969); A. F. Thomas, J. Amer. chem.
 Soc. 91, 3281 (1969); R. J. Anderson, ibid. 92, 4978 (1970).
- [17] R. B. Woodward & R. Hoffmann, Angew. Chem. 81, 797 (1969).
- [18] B. C. Mayo, Chem. Soc. Rev. 2, 49 (1973); A. F. Cockerill, G. L. O. Davies, R. C. Harden & D. M. Rackham, Chem. Rev. 73, 553 (1973).
- [19] Z. W. Wolkowski, Tetrahedron Letters 1971, 825.
- [20] K. D. Berlin & S. Rengaraju, J. org. Chemistry 36, 2912 (1971).
- [21] P. V. Demarco, T. K. Elzey, R. B. Lewis & E. Wenkert, J. Amer. chcm. Soc. 92, 5734 (1970).
- [22] J. Thesing & W. Sirrenberg, Chem. Ber. 92, 1748 (1959).
- [23] H. Seidl, R. Huisgen & R. Grashey, Chem. Ber. 102, 926 (1969).
- [24] M. Mousseron-Canet & J. P. Boca, Bull. Soc. chim. France 1967, 1296.
- [25] R. F. C. Brown, V. M. Clark, M. Lamchen & A. Todd, J. chem. Soc. 1959, 2116; R. Bonnett, R. F. C. Brown, V. M. Clark, I. O. Sutherland & A. Todd, ibid. 1959, 2094.
- [26] J. Thesing & H. Mayer, Chem. Ber. 89, 2159 (1956); Ann. Chem. 609, 46 (1957).
- [27] E. M. Fry, J. org. Chemistry 28, 1869 (1963).
- [28] R. L. Shriner, R. C. Fuson & D. Y. Curtin, Systematic Identification of Organic Compounds, 5th ed., Wiley, New York 1964, S. 253.
- [29] H. Gilman & J. T. Edward, Canad. J. Chemistry 31, 457 (1953).